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EXPERIMENTS ON DRAG OF REVOLVING DISKS, CYLINDERS, AND STREAMLINE RODS AT
HIGH SPEEDS

By Trropore THRODORSEN and ARTHUR REGIER

SUMMARY

An experimental investigation concerned primarily with the
extengion of test data on the drag of revolving disks, cylinders,
and streamline rods to high Mach numbers and Reynolds num-
bers 18 presented. A Mach number of 2.7 was reached for
revolving rods with Freon 113 as the medium. The tests on
disks extended to a Reynolds number of 7,000,000. Parts of
the study are devoted to a reexamination of the von Kdrmdn-~
Prandtl logarithmic resistance law and the Ackeret-Taylor
supersonic drag formula and conditions for their validity.
The tests confirm, in general, earlier theories and add certain
new results. A finding of first importance is that the skin
Jriction does not depend on the Mach number. Of interest,
also, are experimental results on revolving rods at very high
Mach nwumbers, which show drag curves of the type familiar
from ballistics. A new result which may have general applic-
ability is that the effect of surface roughness involves two distinct
parameters, particle size and particle unit density. The part-
1cle size uniquely determines the Reynolds number at which the
effect of the roughness first appears, whereas the particle unit
densily determines the behavior of the drag coefficient at higher
Reynolds numbers. Beyond the critical Reynolds number at
which the roughness effect appears, the drag coefficient is found
to be a function of unit density. In the limiting case of particle
“saturation,’ or a maximum density of particles, the drag
coefficient remains constant as the Reynolds number 1is
increased.

THEORETICAL BACKGROUND

VON KARMAN-PRANDTL THEORY FOR PIPES

Measurements of the value of the skin friction between a
fluid and a solid constitute one of the means for studying
the nature of turbulent flow. Most of the pioneer analytical
work in this field is found in the papers by von K4rmén (ref-
erences 1 and 2) and Prandtl (reference 3). The treat-
ment used in the first part of this section follows the work of
Prandtl which, in turn, is closely related to the von Kdrmén
papers. The theory, which concerns the flow in pipes, is
given in considerable detail as it forms the basis for the suc-
ceeding discussion on flat plates, cylinders, and disks. The
theoretical work in this section constitutes mainly an at-
tempt to analyze and organize earlier work found in many
scattered articles. Considerable work along such lines has
already been done by Goldstein, who is responsible for an
oxpression for the drag on revolving disks.

The von Kdrmén-Prandtl theory for flow in the turbulent
layer is based on the following two assumptions:

(1) The ratio of the velocity deficiency to the friction
velocity is a function of geometric parameters only.

(2) Adjacent to the wall, but beyond the laminar sublayer,
the slope of the curve representing this ratio is inversely
proportional to the distance from the wall. The constant
of proportionality is a universal constant.

The friction velocity is defined as

-
U=y

and the corresponding friction length is defined as

v
=7
(All symbols used in this paper are defined in appendix A.)
A reference time may be given as

T=£_L__£

Ur— Ufz B To

The geometric conditions for a pipe are given by one param-
eter, the radius a. A revolving cylinder of infinite length
represents another single-parameter case, in which the refer-
ence parameter is the radius of the cylinder.

The equation of motion can be written in the form

v_.{yt a
ﬁ,_f*(f’i"’f

and, by adopting suitably defined mean values with respect
to time, at a given profile

X _ (Y &
T. f‘ﬁ( I
Henceforth « will designate such mean velocity. By

measuring the velocity with respect to a velocity U, in a
fixed geometrical position ¢=ka,

e (9)

is obtained. About 1930 von Kérmén showed that for the
turbulent layer this function is essentially independent of L
and dependent only on the geometry as indicated in assump-

tion (1); therefore
—U.
“Tr=h (%)
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This quite remarkable relationship, which has been generally
confirmed by Nikuradse, Wattendorf, and others (references
5 to 7), implies a similarity in the turbulent-field pattern
away from the walls at all Reynolds numbers. The basic
reason for this similarity remains unknown.

It follows from assumption (2) that near the wall

i)

1y .Y
== log L+Constant

where 1/k is the constant of proportionality. (Natural
logarithm has been used throughout except where otherwise
indicated.) Since u=U; at y=34, this relation reduces to

u—Us_ 1, y
U, T« %8s

This logarithmic relationship holds to a certain value ¢ of
the significant parameter e (see fig. 1), where c=ka with & a
constant. The value of 1—% is only a small fraction, so
that the point ¢ will be relatively close to the wall. The
velocity in the center of the pipe is therefore given as the
sum of three expressions, that is,

GG+ tiog i+ (Y]

For the laminar sublayer

Ti_s_
Uu,_L “

and the equation may be rewritten as

a

%‘f=a—% log a-l—% log %’+%c log Ec+|:f(%>l
=0+ log £+6,

where

0'1=a—-}—‘ log @

S TOI

The constant C; is equal to the nondimensional velocity
measured on the logarithmic velocity profile when this
curve is extrapolated to y=L, and the constant (, is the
excess velocity in the center of the pipe as compared with
that of the logarithmic line extended to y=a. (See fig. 1.)
When these constants are combined, the following general
relation is obtained:

and

r=0tilog 7

The application of this theory to cases other than circular
pipes is restricted to geometric configurations given by a
single parameter. It is interesting to observe that both
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C: and 1/« are universal constants resulting from the second
assumption—namely, that the flow near a wall is a function
of the distance from the wall only The second constant
O which gives the excess velocity as compared with the
logarithmic distribution at & reference point, the location
of which depends on the geometric dimensions involved, is
not & universal constant but is dependent on the configuration
and the choice of reference length.

The effect of surface roughness may be treated in a similar
manner. If the roughness parameter ¢/L is less than a certain
magnitude, there is obviously no effect at all. This value
of ¢/L is found experimentally to be 3.3. For 3 > 3.3,
Upez/U- is shown to be constant, or independent of L,
except for the so-called unsaturated condition which will be

defined later. Thus
[ 1 a
T —C’+; log 3.3 -
—0oxl 100 @
=C+ p log 3.3+ p log ;
or
U 1
TE=Kitlog

The velocity distribution is -exactly as if there were a
laminar layer present of a thickness §=3.5¢ or asif the length

L were 3—15 ¢ When L<3—13- s the velocity distaibution no

longer changes with an increase in Reynolds number B. It
seems, therefore, that the distance from the wall of the
innermost disturbance, or the mean value of the thickness
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FIGURE 1.—Parameters and f{unctions of the velocity proflle by the von Kérmén-Prandtl
theory.
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of the laminar layer, is of the order of three to four times
the height of the irregularities or the grain size e. This fact is
not inconsistent with the physical interpretation.

The quantity Upme/U; is shown to equal .\/ ZzT Further,
D

v

L=W
v Uma.r
- Umu E T
and, therefore, .
a_ 01)
=B \/ 2

where R is referred to the maximum velocity and is equal to

Upasafv. The equation
Usaz _
U,
may thus be written
C’n
or
‘,=c$= 03+— 10g R+Cp
where

0—%‘ logx/-?_,

03= \/—i

By the similarity hypothesis, the mean velocity in a pipe
differs from the maximum value by & constant, or

o=k

where U, is the mean value of the velocity. Prandtl gives
4.07 for the value of K;. (See reference 3, p. 142.) Note
further that the product R+/(C, remains the same whether

R and Cp refer to the mean or the maximum value of the
velocity; therefore,

7—0—4 07+ log By /C

and, finally, with R and Cp referring to the mean velocity,

1 11
E— —|—; :/—5 log R-\/C';
where
0—4.07—%]0g V2
= = _\/;2'
With 0=5.5 and «=0.4,
(7| z0.4

This velue is not accurately established, as the various
authors seem to differ.

DRAG OF FLAT PLATES

In order to obtain the drag formula for flat plates, &
calculation similar to the von Kérm#én-Prandtl treatment
for pipes may be performed. The velocity deficiency Au is

given by the relation
Au j(y>
Erm z

where U,,, is & mean value between 0 and z, the distance
along the plate. The missing momentum may be written as

M=pr’(1—%” Ly

e[ o[ ()
PYZE dy— v) %

where U is the stream velocity and 8, is a significant length
giving the thickness of the boundary layer. Rewritten,

this equation becomes
af, () 2 (

a), 7t ()7

or, by virtue of the similarity law,

or

M_Un,
P U

pﬂé yﬁ! 8105 ( ) 61 Gﬂ

Since the momentum is given directly as
1 2
M =‘2’ PU ODM:C

the following identity is obtained:

‘% ODRIE CDrn 8105 CD’H 6105
or
N (CEI Y, (1+2a)
o uls=75 DmT z
which gives

\/C’Z;

Using the logarithmic deficiency relation gives for Cj the
value 1/k, or 2.5, and for C,/Cs the value 2/x, or 5; thus
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By use of the von Kérmén-Prandtl treatment, the stream
velocity is obtained in essentially the same form as for pipes.
With small adjustments, therefore,

U 1. §Un
'm=K3+—"f log —l-v—

By use of the expression for 8,/z, the following equation is
obtained:
R:ODn

1
T-=0Dm—K¢+4.O7 logio 135440

LOCAL VALUES OF DRAG COEFFICIENT FOR FLAT PLATES

It may be noted that a relation for the local drag coefficient
on a flat plate may be found in a fashion similar to that used
later for a disk. Consider a plate of unit width; for the full

length [,
D=0 (% pmz)

=j: Coz (% pU”) dx

With the subscripts m and 2 referring to mean and local
values, respectively, for the length z,

or

Gpm Mﬂ) +1:|=0Dz

d(log R)
Therefore
0D2= OD m (n + 1)

_d(IOg Com)
~ d(ogR)

BOUNDARY RELATION FOR REVOLVING DISKS

where

The moment coefficient is defined as

e M

5
2 5 po'a
The moment may also be written

]
M=2p J; ! @2ra)uan.a dy
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_— Ufm 61 U, ut
2”‘“““( ) f 2 d(ﬁ)
_ Urn ) 8

= pw’a® -—) 0,07

where u, is the variable radial velocity and u, is the tangen-
tial velocity, from which

()0

or

%z Constant

The drag formula then reads

/ 2 1
-0—D'=K5+; log R-\/—C—'l-)

A similar result was obtained by Goldstein in reference 4.

TESTS AND RESULTS

Tests on disks, cylinders, and streamline rods were con-
ducted to determine drag or moment coefficients. For the
cylinder the two coefficients are equivalent; for the disk and
the rod it is more convenient to employ the moment coeffi-
cient, which can be measured directly. In order to extend
the range of Mach number, several tests were conducted
with Freon 12 or Freon 113 as the medium. The test
results obtained are of technical interest because some of
the data, particularly for the high Mach number range,
were obtained for the first time. It may be pointed out
that many of the earlier tests on revolving disks and, in
particular, on revolving cylinders were conducted on a
rather smali scale and in a limited range of Reynolds num-
ber. It may be noted that a considerable range of Reynolds
number is generally needed in order to confirm with suffi-
cient reliability a particular theoretical formula. TFor
instance, it may be impossible to obtain a measurable
difference between logarithmic or power formulas if a short
range of Reynolds number is available. This matter of
distinguishing between the various types of formulas is of
theoretical interest.

EXPERIMENTS ON REVOLVING DISKS
The moment coefficient is defined as

e’

This definition corresponds to the one for laminar flow on a
revolving disk given by von Kérmén in reference 1 as:

w=qR12
where
2
wd
R=—o
v
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The constant a, used by von Kédrmén was 1.84 for one side
or 3.68 for both sides; this value was later adjusted by
Cochran (see reference 8, vol. I, p. 112) to ¢,=3.87. If this
corrected value of g, is inserted, the formula for laminar
flow reads

Cy=3.87TR™17

The turbulent-flow formula as given by von Kérmén for
revolving disks is

Cy=0.146R~15

In figure 2 are shown the experimental results for tests of &
geries of revolving disks. The Reynolds number ranged
from about 1600 to more than 1,000,000. Note that the test
points lie along the theoretical curves given by the von
Kérmén formulas. The transition from laminar flow is seen
to occur at £=310,000. This was the largest value reached
with the most highly polished disk.

The thickness of the laminar boundary layer is, according

to von Kdrmén,
w

2 _o.58R-1
a

or, which is equivalent,

Using Ra=61ua leads to
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L

For the transition Reynolds number, 310,000,
R;=2.58+/R
=1440

which is of the same order as the minimum ecritical value
obtained for pipes.

Several tests were conducted for the purpose of investi-
gating the factors affecting the transition Reynolds number.
The first observation was that the transition Reynolds num-
ber could not be increased beyond the value 310,000 no
matter how highly the surface was polished or whatever
other precautions were taken. ILikewise, it was unexpectedly
difficult to decrease the transition Reynolds number. The
application of coarse sand (60 mesh) glued to the surface of
a disk (1-ft radius) only reduced the transition Reynolds
number to about 220,000 (fig. 2). The reduction in the
transition Reynolds number by initial turbulence was also
studied. A small high-pressure air jet applied near the cen-
ter of the disk produced the greatest observed reduction
(fig. 2) and brought the transition to a point near the inter-
gection of the lines representing the drag formulas for lami-
nar and. turbulent flow, which is the absolute minimum.
Note that the drag in the turbulent region is quite appre-
ciably increased by surface roughness.
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The values of the moment coefficient given in figure 2
represent obviously an integrated drag over the disk. An
expression may be obtained for the local drag coefficient Cp.
as a function of local Reynolds number as follows:

M=0Cy (%pw’a‘)

—s L “Cos @w} @) dr

1 25
gy

el ()2
G (i [0 ()4)
205 (3 ()

7' do_u

“(3)

+ 50,1{—47!‘01);

or
Cor=gz Ou G 75 |
and
E+3
log Cp,=log Cy+log
where
=d(lo Car)
E=dlog )
If
Ou’—-_CR.
then
Cpr—= 5+2n Oy

By use of the expression for log Cp., some of the data of
figure 2 are plotted in figure 3. Although the general picture
does not change much, the abrupt nature of the transition
becomes apparent.

An llustration of the boundary-layer profiles for various
radii or Reynolds numbers is given in figure 4, in which
curves of equal velocity u./wr are also plotted. Note that
the thickness of the boundary layer in the laminar region is
essentially constant. The transition value of R, 310,000,

By substituting is shown approximately by the line marked “Approx.
By transition” in figure 4. The nominal laminar boundary-
¥= \/ i’y layer thickness consistently appears to be somewhat in excess
of that given by von Kdrmén in reference 1. There appears
1 Rdo” 5 o, to be some discrepancy from the theoretical velocity distri-
R Taglr=Cor bution which is shown for the laminar boundary layer as
~L6
-8
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L =205+ 4.07 logwRe V] oo
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FI1GURE 3.—Local drag coefficient for disks obtained by differentiating the moment-coeflicient curve.
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obtained from work by Cochran. (See reference 8, vol. I,
p. 112.) It is recognized that the experimental error in this
case is of considerable magnitude. The turbulent boundary
layer shows almost perfect agreement with the logarithmic
curve, which is plotted for one profile in figure 4.

It may be remarked here that a series of hot-wire tests
were run to study fluctuations in the boundary layer with the
following results:

(1) No disturbances were noted in the laminar region

(2) A pure tone of a frequency of about 200 cyecles per
sccond was observed in the transition region

(3) A random disturbance involving much higher fre-
quencies was observed in the turbulent region

In figure 5 the upper range of the Reynolds number has
been considerably extended. The highest Reynolds number

reached is 7,000,000. The %—power law holds fairly well in the

observed range which, however, is too limited to permit a
distinction between the power law and the logarithmic law
for the velocity distribution. The main purpose of the tests,
the results of which are shown in figure 5, was to investigate
the effect of the Mach number. The first run taken with air
a8 the medium extended to a Reynolds number of about
2,000,000 and a Mach number of 0.62. By using Freon 12
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drag coefficient is absolutely independent of the Mach
number. A separate extension of the experiments to a Mach

number of slightly more than 2 further confirmed this inde-
pendence of the Mach number.

EXPERIMENTS ON REVOLVING CYLINDERS

The experimental results for revolving cylinders are shown

2

in figure 6 as a plot of log1Cp against log,R, where R=M%-

The drag formula for laminar flow on a revolving cylinder
is obtained from Lamb (reference 9, p. 588) as

5

C’D:R

where
0D=q§

M
~ %

In this formula S is the surface area and a the radius. In
this case it is convenient to use Cp instead of Cj, which was
used for the revolving disk, because no integration is in-

volved. The laminar curve is shown in figure 6. The drag
as the medium, the range of Reynolds number was extended | relation given by
to 7,000,000. At the lowest pressure, the highest value of
the Mach number reached was 1.69. All the data for Freon 12 1
. . =—0.64-4.07 log), R+/C},
show a slightly higher drag than that given by the von NIoN + o1 8
Kéarmdn formula, apparently because of some systematic
error, The significant result of this investigation is that the | for the turbulent flow is also shown in figure 6.
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The experimental results are replotted in figure 7, where
1 —
/Uy is shown as a function of log;eR+/Cp. The relation
for the turbulent flow

L 0.644.07 logiR+Ch

JCp

appears in figure 7 as a straight line. The coefficient Cp in
this formula corresponds to a value of 0.4 for von Kérmén’s
universal constant k. The relation for the laminar region

p=1% appears as g curved line near the origin.

It is noted that the drag coefficient for rough cylinders is
dependent on the relative grain size e/a, where ¢ is the size
of the sand and a is the radius of the cylinder (see fig. 8),
and that for each grain size the drag coefficient remains
constant and independent of the Reynolds number beyond
a certain minimum or critical value, which lies on the line
for turbulent flow. In regard to the magnitude of the drag
coefficient as a function of relative grain size for particle
“gaturation” of the surface, it may be remarked that the
value of & is a measure of the thickness of the sublayer or,
what amounts to the same thing, a measure of the minimum
grain size of the turbulence. It is therefore to be expected
that the surface roughness will become effective at the
Reynolds number for which ., the critical value of ¢, be-
comes less than the grain size e. Inversely, it may be seen
that, if the Reynolds number becomes smaller than this
critical value, the grain size of the turbulence is too large to
be affected by the surface roughness. With e greater than
€or, Which is 3.3L, the following relation is approximately
true for the drag coefficient beyond the critical Reynolds
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number for surface roughness of saturation density:

W/—lﬁ: —0.6+4.07 logio 3.3v2%
D

=2.12+4.07 logyy =

In figure 9 the experimental points are shown to satisfly this
theoretical relation with suffi¢ient accuracy.

Tests were made to determine the effect of the density of
spacing of grains of a given size, and the results are presented
in figure 10. Such tests were made with a certain unit
grain size but with the surface density in grains per square
inch varied between 90 and 2200. The grain size used’cor-

responds to the size f;=0.03, also used for the preceding ex-

perimental results shown in figure 8. It is verified that the
critical Reynolds number depends on the grain size only,
and it is further shown that the slope of the drag curve
beyond the critical Reynolds number is a function of the
density. A saturation condition evidently always oxists,
in which the drag coefficient remains approximately con-
stant and equal to the critical value.

EXPERTMENTS ON STREAMLINE RODS

In figure 11 results are given for certain more or less stream-
line bodies, each tested in two or more different mediums.
The tests were obtained by using actual propellers of 12-inch

4
o Smooth cylinder
+
~ x 310\ graoms of 40-mesh
a  730| sond per sqin.
o 2200
-8
~12 - I
S Laminar flow, G &-—1—"]
§ N
= !
_— | ren
N L3 g > Tery ugo -
20 N\ <E: "ﬁﬁai ] x BBehuo d saopm
- ‘Q@?-!- u + L X X
., Pﬂ&&@ +t".] M-Jm rj
E % ¥ Tl
-24 N | i
s Jurbulent flow for smoolt cylind ] 5O00, — 1
Tzlﬂ-af*ﬂl?”og., RYG |
" ||
o g # e 20 24 28 32 36 40 42 48 &2 56 &0

Log, R

F1GURE 10.—Eflect of varying density of surface roughness on the drag coefficlent.
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diameter, which are designated propellers B and C. Pro- 0058
peller B had a section of double symmetry with a circular-arc
contour line. Propeller C was obtained by reducing the o
chord of propeller B by removal of about one-fifth of the | o4 (i Hg) ==
chord near one extremity to obtain a blunt-nose airfoil. By o 30 Air
running propeller C backwards an airfoil with a blunt trailing ¥ f.’;gg’,; ’lg
edge could also be studied. The coefficient used in figures
11, 12, and 13 is the standard torque coefficient for 0040
propellers
Co=—3r .
D 0032 ,/x"“\‘ —
. e s 4" {13
Tor the symmetrical airfoil B, a value of the Mach num- /
ber ! of about one was reached in air, the range was extended | I/
to 1.6 in Freon 12, and the characteristic decrease in the drag | .4 "YP
coefficient was finally reached in Freon 113. A-considerable -
decrease in drag coefficient was noted at the largest Mach 5
number, 2.7, which to the knowledge of the authors is the i
g 0016
highest Mach number reached except for a few cases of -
projectiles. ¥
0104 s ° 5 g‘}
A 4 ° g 2 7 —Sq
Y Vo B
0096 af 3 B aae= T
Propeller C, _ § ° |
blunt edge /cad/ng-.\‘ 3 0 P, 8 12 16 20 24
0088 1 .+Fropeller C, Mach number, M
' 4 1 |sharp edge leading]
3%
T TN Figure 12.—Torque coefficient Co==—F= as function of Mach number for propeller E.
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F1aURE 11,~Torque coefficient Cq-m as function of Mach number for propellers B and C.
F1GURE 13.—Torque coefficient C'q—;,n—,Q-f, as function of Mach number for propeller D.

1 Note that the Mach numbers used in figures 11, 12, and 13 are based on the tip radius.
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The blunt-nose airfoil section C showed approximately the
same low-speed resistance as the symmetrical sharp-nose
section B but had a maximum torque coefficient very much
in excess of that of section B. The test extended only to
near the peak of the torque curve with Freon 12 as the
medium. By reversing the direction of motion of propeller
C to obtain a blunt rear, the expected large increase in drag
at low Mach numbers was observed. The appreciable
difference in Reynolds number for air and Freon 12 is
apparent from the difference in drag coefficients in the range
below a Mach number of unity. For higher Mach numbers,
the drag coeflicient of the section with the blunt rear lies
between the drag coefficients of the doubly streamline section
and the blunt-nose type; the streamline leading edge is
approximately twice as effective as the streamline trailing
edge, a result in general agreement with earlier observations.
It should be noted, however, that the lowest drag is obtained
with both leading and trailing edges streamlined.

The effect of the Reynolds number is also shown in figure
12, which gives the results of tests to study how the scale
cffect is superimposed on the Mach number effect. It should
be noted again that the Reynolds number effect appears only
for a Mach number below unity. A wide variation i the
Reynolds number shows no consistent measurable effect on
the drag for a Mach number greater than unity. Similar
data for a small angle of attack, instead of zero angle of
attack as used in the preceding discussion, were used in one
case, for which results are given in figure 13.

The four propellers referred to in figures 11 to 13 are shown
in a photograph (fig. 14) and the dimensions of the propellers
are given in table I.

TABLE I

DIMENSIONS OF PROPELLERS OR REVOLVING RODS FOR
TESTS AT HIGH MACH NUMBERS

All propellers have a straight taper In chgdﬂ;:.n&tihlckn& The tips are rounded as shown
At 50 percent radius | At 92 percent radius
Propeller Alrfoll section | Xltch
designation (9¢®) | Ohord | Thickness | Chord | Thickness

(n.) (in.) (In.) (in.)
B Olrcularare_.__....| O L76 0.31 1.07 0.14
o Blunt nose. ... 0 1L.30 .35 .82 .15
D Circularare..._._... 2.5 1.4 .18 103 .11
B Ofrcunlarare_____....[ 0 .8 .13 .52 .07

tacEMD was twisted so that approximately the outer half of the blade had an angle
of at

It is of some interest to interject a superficial analysis of
the results presented herein, in view of Ackeret’s formula
a8 given by Taylor (reference 10). For the local section
Ackeret gives the drag coefficient as

—172 — . ==
Co=2(5-1)  C+EI+ED

For zero angle of
=g, this relation

where the bar indicates the mean value.
attack and a symmetric section with g3

becomes .
gy

For a circular-arc section, F:% Bmat, Where g,.. 18 the

maximum angle. This angle is, in turn, approximately
equal to twice the thickness ratio ¢, which is the total thick-
ness divided by the chord. For circular-arc scciions,

therefore,
16 /v -2
Op='3— (‘a—g— 1) A

Figure 15 shows Cp plotted against Mach number for
different values of ¢. At AM4=1.0, the curves tend erroneously
to infinity. This effect follows from a simplifying assumption
used in the derivation of Ackeret’s formula.

Figure 14.—Propellers B, O, D, and E.
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FIGURE 15.—Theoretical curves of the drag coeflicient Cp against Mach number for varfous
thickness ratios for ciroular-arc airfofls by Ackeret’s formula. R
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By using the general form f (A4) instead of the Mach num-
ber function 4-1,_2_1’ the drag coefficient may be written

o= 2()

The torque coefficient is known experimentally to be a
funetion of the Mach number, or 1/z;, where 2; is the fraction
of radius at which the Mach number is unity; thus, the fol-
lowing integral relation is obtained:

Op=Nr? L e (% t’) f (f) d

There are several ways of handling this relation. The non-
dimensional chord ¢ and the thickness ¢ may be taken to
represent a preferred section at approximately 80 percent

&4 lt

l Theoretical,

\]- @y

\

20

L6

7 A .8 124 16 20 24 28
Mach number,M

FIGURE 16.—Values of drag function f(A{) as function of Mach number from analyais of
experimental moment curves for propeller B in figure 11.

of the radius. By assuming an initial drag coefficient Cp
any desired accuracy may be obtained by iteration methods.

The function f(A{) shown in figure 16 has been obtained
for propeller B by such a process based on the experimental
data given in figure 11. Note that the drag coefficient
approaches the value given by the Ackeret formula for large
values of M, for which f(M) approaches (M42*—1)""3. Note
further that the maximum value of the drag coefficient
occurs at M=1.2 with f(M) almost exactly equal to unity.
It is, of course, not to be concluded that the function f(A1)
has general validity; the function is given here for propeller B
for the purpose of comparing the data with the Ackeret
theory.

CONCLUDING REMARKS

Exparimental results on the drag of revolving disks have
been presented, which substantiate to a remarkable degree
drag formulas based on the von Kfrmén-Prandtl theory of
skin friction. The range of the investigation was extended
to & Mach number of 1.69, which is beyond the range of any
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earlier test, and to a Reynolds number of 7,000,000. It was
established that the skin friction is independent of the Mach
number up to this value and appears to be a function of the
Reynolds number only.

The drag at supersonic speeds was studied with revolving
rods or propeller sections. Mach numbers as high as 2.7
were attained in the tests. The drag at supersonic speeds is
a function of the Mach number only, as it appears to be essen-
tially independent of both the Reynolds number and the
nature of the medium. The characteristic peak in the drag
curve observed for projectiles was obtained. For thin
streamline bodies, this peak appears at Mach numbers only
slightly beyond unity; in fact, it appears at a Mach number
of about 1.2. Systematic tests were conducted on stream-
line bodies with combinations of sharp and blunt leading
and trailing edges for the purpose of obtaining the relative
merits of such features. It was found that the increase in
the peak value of the drag coefficient resulting from a blunt
nose is about twice that resulting from a blunt trailing edge,
when both drag coefficients are compared with the drag
coefficient of a section with streamline leading and trailing
edges, which has the lowest value.

Significant results were obtained on revolving free cylin-
ders for which references to earlier tests seem to be lacking.
It was found that, at very low Reynolds numbers, the drag
asymptotically approaches the laminar drag of the classical
theory whereas, at higher Reynolds numbers, the drag is
found to conform to a logarithmic formula of the von
Kérmén type. There is no distinet transition from laminar
to turbulent flow, as is found in pipes and on revolving disks.
The flow is essenfially turbulent down to the smallest
Reynolds numbers. :

The effect of inifial turbulence was particularly studied in
connection with tests of revolving disks. It was found that
the transition Reynolds number was very slightly affected.
The critical Reynolds number at which the roughness eflect
appears depends on particle size only and is not a function
of particle density. Beyond this value of the Reynolds num-
ber, the drag coefficient is constant only when the surface
is “gaturated,” that is, when the density of the individual
particles attains a maximum value. For a roughness of less
than this particle density, the drag coefficient decreases with
Reynolds number.

It is interesting further to note the persistence of the
logarithmic relationship. When 1/+/C) is plotted as a func-
tion of log B+/C) (where Cp is the drag coefficient and R 1s
the Reynolds number), the lines representing turbulent flow
are invariably straight. A rather critical demonstration of
the logarithmic velocity pattern near the surface is thus
shown. The range investigated is of considerable extent.

Lanarey MEMORIAL ABRONAUTICAL LLABORATORY,
NaTioNar Apvisory CoMMITTEE FOR ABRONATUTICS,
Lawerey Fiewp, Va., April 24, 1944.
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APPENDIX A

SYMBOLS
friction velocity (\/-;;;) @
shear per unit area at surface Cp
mass of air per unit volume
mean friction velocity (from 0 to z) Con
stream velocity for flat plates Co:
maximum velocity D
mean velocity (in pipes) D,
reference velocity (at a given fraction of | e

radius or of other reference dimension) €or
velocity at &
absolute variable velocity of fluid in | Cy

boundary layer M
velocity deficiency, stream velocity minus

local velocity for flat plates R
radial velocity for disks R
tangential velocity for disks
angular velocity, fadians R,
thickness of laminar sublayer
boundary-layer thickness
friction length (v/U.) R,
total length of plate R,
reference time (L/U,) v
time; also, thickmess ratio for propeller

. (Thickness of airfoil .

section ( Chord S
coefficient of kinematic viscosity Co
coeflicient of viscosity Q
variable radius of pipe, disk, or propeller N
tadius of pipe, cylinder, or disk; also, | 7

velocity of sound in fluid
distance from leading edge of flat plate in | Bu B2

direction of flow; also, fraction of pro-

peller radius(:t:=71'—2 where R denotes i

radius of propeller tip) G
fraction of propeller radius at which Mach

number is unity G,
distance normal to surface
nondimensional profile constant for turbu-

lent flow near walls C= GCH-C’z

. . . ¢ | Gy, Gy, ...

fraction of reference dimension (a_k>’ R, K, K, . .

also, nondimensional chord of airfoil | %

ax

(adies)

angle of attack of airfoil; also, profile
constant (3/L)

total-drag coefficient (Many authors use f,
v, or A/4 instead of Cp for pipes.)

mean drag coefficient (from 0 to z)

local drag coefficient

drag; also, propeller diameter

drag of plate (from 0 to z)

grain size of roughness

grain size of critical roughness for particu-
lar value of drag coeflicient

moment coefficient for revolving disks

issing momentum; moment for disks; or
Mach number

Reynolds number

Reynolds number based on thickness of
boundary layer

Reynolds number based on distance from
leading edge of flat plate or on local
radius of disk

Reynolds number based on pipe diameter

Reynolds number based on pipe radius

velocity (Ackeret formula)

dynamic pressure (for cylinders, q=%pw’a’)

area of cylinder

torque coefficient (Q/pn?D")

torque

number of blades

rotational speed, revolutions per second;
also, coefficient in power law

angles which upper and lower surfaces of
airfoil make with center line

maximum angle which circular-arc section
makes with center line

nondimensional velocity measured on log-
arithmic velocity profile when this curve
is extrapolated to y=L

nondimensional excess velocity at y=a
over that of logarithmic line extended
to y=a

constants

constants

constant

constant in equation for moment coeffi-
cient of revolving disks



APPENDIX B
NUMERICAL VALUES OF POWER REQUIREMENTS FOR REVOLVING DISKS AND CYLINDERS

A chart is presented (fig. 17) which gives the horsepower
required to drive a smooth disk in standard air (760 mm
and 15° C, p=0.00238 slugs/cu ft and v=0.000159 ft*/sec).
Lines of constant horsepower ranging in value from 0.01 to
1000 are plotted with disk rotational speed (in rpm) as
abscissa and disk diameter (in ft) as ordinate. The dashed
line in figure 17 represents a Reynolds number of about
400,000, which is considered the transition Reynolds
number.

The following formulas were used to calculate the power
for disks operating in the turbulent region:

Mo=C)y (% pa5w3>

Cy=0.146R"1%

—1/5—2/5 _.—1/5
=0.146 9—;“—%—”—

H or—240
orsepower=rzx

0148 oo (6 25 02
B50X2 P Tk

Inasmuch as the formula for (i is based on the 1/7
power for velocity distribution, the calculated values of Gy
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Fi1aURE 17.—Power requirement for smooth disks
843110—50——20

are too low for high Reynolds numbers. This error may
become appreciable for the highest power, since the chart
(fig. 17) covers a range of Reynolds numbers to 60,000,000.

A chart is also presented (fig. 18) which gives the horse-
power required to rotate & smooth cylinder of unit length
(1 ft) in standard air. The following formulas have been
used in calculating the curves:

Mo=CpgSaw

2,2

H wer—24%
orsepower=rgzo

. Gdfpa"wa
~ 550

where, for smooth cylinders,
1 =—0.6+4.07 logy, B+/C»
V0>
and, for rough cylinders, ¢ >¢ s,

1 a
——=2.1244.07 logy, =
V0> S
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APPENDIX C

COLLECTED SKIN-FRICTION FORMULAS
FLAT PLATES (ONE SIDE)

SYMBOLS

The following symbols are used in the formulas for flat
plates collected herein:

Op totul drag coefficient
Op: local drag coefficient at point z

z distance from leading edge of flat plate in direction of
flow

length of flat plate in direction of flow
R Reynolds number based on [

o

R: Reynolds number based on z

LAMINAR FLOW

The formula for total drag coefficient
Cp=1.328R"'\~”

is based on the simplified hydrodynamic equations developed
by Prandtl in 1904. (See reference 2, p. 2.) The constant,
which was calculated by Blasius in 1908 as 1.327, was cal-
culated by Tépfer in 1912 as 1.328. (See reference 3, p. 89.)
The formula for local drag coefficient is

Cp:=0.664R,17

Von Kérmén, Schoenherr, and others have indicated that, if
the total drag coefficient is

Op=Constant R*
the local drag coefficient is given as
0D2= (n-l" I)C’D

This relation is derived in the section entitled “Liocal Values
of Drag Coefficient for Flat Plates” in this paper. All for-
mulas given in this appendix for the local drag on flat plates
are in conformity with this derivation.

TURBULENT FLOW—SMOOTH SURFACE

The formulas
Cp=0.074R~1/5
and
OD;=0.059R,_1/5

were first calculated by von Kérmdn in 1920.
1 and 2.) Based on results from pipes and on the %—power

(Seereferences

law for velocity distribution, they are consequently valid
in the lower Reynolds number range, R<(10,000,000.
382

Some writers use the following formulas of the same
type, which are fairly accurate to a Reynolds number of
500,000,000:

Op=0.030R~/7

Cp.=0.026R,~7

Of more general validity are the so-called logarithmic drag
formulas of the type

1
W’;=4'15 log1wRCp

The form of this relation was determined by von Kérmén
with constants adjusted to conform with data by Schoenherr
and others. (See reference 2, p. 12.) In the present paper
a different form has been developed, which is in somewhat
stricter theoretical conformity with the physical relations
involved: )
1 RO,
m—4.07 logyo 13540,

Prandtl has developed an explicit expression which gives
essentially the same results as the logarithmic formulas. It
is

Cp=0.455(log; R) 58

(See reference 3, p. 153.) The local drag coefficient has also
been given by von Kdrmén in a logarithmic form with the
constants adjusted to fit the experiments of Kemp, which
included measurements on small movable plates inserted on
8 long pontoon. This formula is

1

—==1.7+4.15 log;cR.C.
mz + 0 IOR Dz

(See reference 2, p. 12.)
TURBULENT FLOW—ROUGH SURFACE

Schlichting (see reference 8, p. 382) gives the two following
formulas for the total and the local drag coefficients for rough
flat plates, respectively:

—-28
0D=<1.89+1.62 logio %)

—-35

0,,,=(2.87+1.58 logio f)

Von Kérmén (reference 2, p. 18) gives for the local drag
coefficient for rough surfaces a formula of the logarithmic
type

1 T
'—CTDI=5.8+4.15 ].Ogm '; -\/_0—,:




DRAG OF REVOLVING DISKS, CYLINDERS,

PIPES
SYMBOLS

The symbol R; used in this section refers to the Reynolds
number based on the pipe diameter and the mean flow
velocity, and the symbol B, refers to the Reynolds number
based on pipe radius. Some writers use f or vy instead of
Op, used herein, and others use N where A=40j.

LAMINAR FLOW

For laminer flow in pipes the formula for drag coefficient is
16
Cp =&,

This formula is attributed to Poiseuille and Wiedeman.
(See reference 3, p. 38, and reference 8, p. 298.)

TURBULENT FLOW—SMOOTH SURFACE

The formula for drag coefficient for turbulent flow in
smooth pipes is
0D=0.079R¢_1“

This formula is based on the experimental workof Blasius
(see reference 3, p. 136), for which the Reynolds number
range was rather limited. Later work by Nikuradse (ref-
crence 5) oxtended the range of Reynolds number to a
much higher value. The following formula of the type
developed by von Kérmén fits the data better:

1
vOp

(See reference 8, p. 338.) In the present paper a formula of
this type with different constants is developed:

= —0.40+4.00 logy R:+/Cb

1 /
—==0.40 4:-07 10 Ra 0
Joe + B0 Lta VD

TURBULENT FLOW—ROUGH SURFACE

For turbulent flow in rough pipes

1

VCb

Thoe experimental work in deriving this formula was done
by Nikuradse. (See reference 8, p. 38C, and reference 6.)

—3.4644.00 1ogmg—

REVOLVING DISKS
SYMBOLS

The following symbols are used in the formulas for revolv-
ing disks:
O moment coefficient
Op: local drag coefficient at radius z

AND STREAMLINE RODS AT HIGH SPEEDS
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R; Reynolds number at radius z (?)

LAMINAR FLOW

For laminar flow

GM=3.87R—1 2
and
Cp=22 B
T

This formula for local drag coefficient is derived from the
relation
_5+m

Cos 47

Clr

For the development of this relation and for references, sece
the section entitled “Experiments on Revolving Disks” in
this paper.
TURBULENT FLOW
For turbulent flow
0u=0.146}2—1'5
and
0)),=0.053R,_1/6

The formula for the local drag coefficient Op. is derived
from the equation for the moment coefficient Cy in the same
way as for the case of laminar flow. The local drag coefficient
in logarithmic form may be given as

1/—-15.‘;=—2.05+4.07 logi R:+/Co
The constant —2.05 has been adjusted to fit the data of
figure 3.
REVOLVING CYLINDERS
For laminar flow

4

0D=R

For turbulent flow on smooth cylinders

. _
Jg=—0-6+407 log R V0o

For turbulent flow on rough cylinders

1
Jop =2 1+4.0 logig %

The development of these formulas and the references are
given in the section entitled “Experiments on Revolving
Cylinders ™
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